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N O N S T A T I O N A R Y  C O N C E N T R A T I O N  P O L A R I Z A T I O N  

I N  L A M I N A R  U L T R A F I L T R A T I O N  I N  A P L A N E  
C H A N N E L  

V. I. Baikov and A. V. Bil'dyukevich UDC 532.542 

A semiintegral  m e t h o d  o f  de terminat ion  o f  concerntration polarization is suggested and  specific fea tures  o f  

the latter in laminar  ultrafiltration in a p lane  channel  are discussed.  

Stationary concentration polarization in the diffusional boundary layer near the surface of membranes in 

laminar continuous-flow ultrafiltration has been described mainly by the integral method [1 -  4 ]. However it is well 

known that the results obtained by the integral method depend substantially on the correct specification of the law 

of the concentration field distribution in the boundary layer. The power [2 ] or polynomial [3, 4 ] dependences 

adopted to describe the concentration field distribution produce a large error or give incorrect results. The last 

circumstance is due to the fact that the specific features of the boundary conditions over a membrane require that 

the power and polynomial dependences accurately describe the concentration profile and the diffusional flow 

simultaneously. This means that prior to solving the equation of convective diffusion it is necessary to have a 

practically exact solution of it near the membrane surface. The power or polynomial dependences fail to meet this 

requirement [5 ]. 
In the present work a new approach is suggested that may be considered to be a semiintegral method, and 

it is used to analyze nonstationary concentration polarization in ultrafiltration in a plane slotted channel. This 

problem is of importance for determination of the time required for continuous-flow ultrafiltration to attain a 

stationary regime. 
For simplicity (without loss of the generality of the method) we dwell on the first stage of laminar 

ultrafiltration when no gel is formed over the membrane surface during concentration polarization. 

Assuming that the membrane possesses ideal selectivity, we consider the nonstat ionary laminar 

ultrafiltration process in a plane slotted channel. Then the dimensionless equations of motion, continuity, and 

convective diffusion acquire the form 

Ou Ou OP 1 02U 
u - - +  V . . . .  + _ _  _ _  (1) 

O~ Or/ O~ Re Or~ z '  

Ou Ov 0, (2) 

1 020 0 o  + u o_oe + v = 2 

0~: O~ Orl Pe Or/ 

(3) 

with the boundary conditions 

u = O , v = - v (r/ = O) ; Ou -~- = 0 (r/ = 1 ) ,  (4)  
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1 oO oO 
VOw+ Pe 0 ~ - - 0  ( r /=O) ;  0~/ - 0  (r /= 1), (5) 

O =  1 ( ~ = 0 ) .  (6) 

In this statement of the problem the following factor is important. Since Pe >> Re, then in considering 
dynamic problem (1), (2), (4), we may employ the hypothesis of a quasistationary state, i.e., we may assume that 
each instantaneous concentration distribution corresponds to its stationary velocity distribution at the given 

moment. 
In [6 ] it is shown thai for the dynamic problem with small transmembrane velocities V and a parabolic 

velocity profile at the channel inlet we may use, with a high degree of accuracy, the following expressions for the 
velocity components u and v: 

( u = 3 ( 1 - V ~ )  r / -  , v = - V  1 - - ~ r /  + . (7) 

Numerical calculations of the concentration polarization in the initial statement (1)-(6) with profile (7) give a 

deviation not exceeding 7 %. 
Since the diffusional Pe number is much greater than unity (Pe --" 10 7) under real conditions, the thickness 

of the diffusional layer at any point of the channel is much less than its half-height, i.e., it pertains to the near- 

membrane region. Then, to solve diffusion problem (3), (S), (6) we may use just the first terms in r / in  velocity 
distribution (7): 

aO oO a ( 1 o o )  (8) 
a--~-+3(1 - v~)~ 0--~-=~- ~ v o +  p---~ 0-~- �9 

Next, following the conventional integral method [2-4  ], we represent the concentration profile as a power 

or polynomial dependence on 7/, and we introduce a diffusional layer thickness c3 (r, ~) that is determined from the 
condition of satisfying Eq. (8) on the average, i.e., by integrating it with respect to r/from 0 to c3. The problems 
arising with such an approach were considered above. 

The suggested approach is not associated with a dubious approximation of the concentration profile in the 
form of a polynomial or power dependence but is based on the concentration distribution obtained directly from 

Eq. (8). It should be noted that the goal of any calculation of concentration polarization consists in determination 

of the solute concentration over the membrane surface. We use a method usually adopted in nonstationary problems, 
when a nonstationary distribution is specified proceeding from the solution of the stationary problem 

O0 0 ( P--~ 1 0 0 )  0---~- (9) 3 ( I -  V~)~ 0---~= ~ -  VO+ . 

As follows from Eq. (9), in the immediate proximity to the membrane surface, i.e., at r/--, 0, the following expression 
is valid: 

O ( , 0 0 )  
O--~ VO + p---~ 0=-~- = 0. 

Double integration and use of the first boundary condition of (5) yields the stationary concentration distribution 
near the membrane: 

O = O w exp ( -  Pe Vr/). (10) 

Proceeding from Eq. (10) and physical considerations based on the concept of a boundary layer, the 
concentration distribution may be represented by the dependence 
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f 
O 1 = ~  Ow(Z, ~ ) e x p ( - P e V r / ) ,  0 - _ - r / _ 5 ( ~ ,  ~), (11) 

t 1, 5 _ < r / < l ;  

where the unknown thickness 5 of the diffusional boundary layer is found from the condition 1 -- Ow exp ( - P e  
VS), i.e., 

In O w (12) 
5(~', ~ ) -  P e V "  

To determine the still unknown concentration Ow(Z, ~) on the membrane, we use the integral equation of mass 
balance. For this, we will integrate the equation of convective diffusion (3) across the boundary layer from 0 to 5 

and use the first boundary condition of (5) and the condition O = 1 at r/= 5. Then 

0 6 0 6 
0--~ f (O - 1) dr/ + 0-~ f u (O - 1) dr /=  V. (13) 

0 0 

Substitution of the distributions of velocity (8) and concentration (11) into Eq. (13) gives 

0-7 f [ O w e x p ( - P e  V r / ) -  l l d r l +  
o 

3 
+ 0-~ f 3 ( 1 -  V~)r/ tO w e x p ( - P e V r / ) -  l l d r / =  V. 

o 

Hence after integration with account for dependence (12) we arrive at 

3 0 ~  I 1 (ln Ow) 2 I I = V .  (14) 1 0 ( O - l n O  w -  1 ) +  (Pe----~ ( 1 - V ~ ) x  O w - l n O  w - ~  PeV Or 

From physical considerations, a nonstationary process may be considered as two limiting regime, namely, 

purely nonstationary and stationary. 
We consider the stationary mode of concentration polarization. After integrating with respect to ~ and 

applying the boundary condition Ow = 1 at ~ = 0 we obtain from Eq. (14) 

V~ pe2V 2 (15) 1 
O w - I n  O w - - ~  (In Ow) 2=  1 + 3 (1 - V~)" 

The formula obtained agrees well with the numerical solution of the system equations (1)-(6) with 

parameters typical of the ultrafiltration process (Pe V-- 10-103). 
We now analyze relation (15). At small channel lengths when Ow - 1 ,  it may be represented as 

Ow = 1 + e, where e < 1. Performing a series expansion of In Ow in powers of e and using only cubic terms of the 

expansion, we obtain 

O w = 1 + (2 PeZVZV~) 1/3 . (16) 

When Ow >> In Ow, we find from (15) the following relation: 

V~ (PelO 2 (17) 
~  3(1 - v O '  

which is valid either at large Pe V or at a large channel length. It is noteworthy that formula (15) and its corollaries 

(16) and (17) give results that practically coincide with the dependences for short, moderately long, and long 

channels obtained in [7] for reverse osmosis (Pe V = 1). 
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We now analyze the purely nonstationary mode of concentration polarization. After integrating with respect 

to r and using the initial condition Ow = 1 at r = 0 we obtain from Eq. (14) 

OWl - In 0Wl - 1 = Pe VVT. (18) 

Hence for short durations of nonstationary ultrafiltration when OWl ~ 1, i.e., OWl -- 1 + e, and just the initial powers 

of the expansion of In Ow with respect to e may be used, we have 

Owl = 1 + (2 Pe VVr) ~ . (19) 

For a protracted ultrafiltration process or considerable Pe V, when Ow >> In Ow, we find from (18) 

OWl = Pe VV~. (20) 

Finally, we calculate the time z s required for the ultrafiltration to attain a stationary state at any point with 

coordinate ~. This time is determined from the condition Ow -- Owl. Then from relations (16) and (19) as well as 

(17) and (20), we obtain, respectively, 

r s = ~-Pe (21) 

Pe V,~ (22) 
r s - 3 ( l _  V~)" 

For illustration purposes, we shall evaluate the time required for the concentration polarization to attain a stationary 

state in a plane channel with the half-height h = 10 -3 m, a length of 1 m, a mean flow rate at the inlet of u0 = 1 

m/sec, the transmembrane velocity V = 10 -5 m/sec, and the diffusion coefficient D = 10 - l ~  m2/sec. In this case, 

from formula (22) we have ts = ( V h / 3 u o D ) X ,  i.e., ts - 3 0  sec. 

In conclusion, we would like to emphasize once more that the semiintegral method suggested is 

advantageous since the concentration distribution in the diffusional boundary layer is determined directly from the 

equation of convective diffusion. In this distribution the unknown parameter is not an arbitrary quantity such as 

the thickness of the diffusional boundary layer c$, which is the determining parameter in a purely integral approach, 

but the physically clear parameter Ow, i.e., the solute concentration on the membrane, which characterizes the 

concentration polarization process in ultrafiltration in many respects. 

N O T A T I O N  

= x / h ,  ~1 = y / h ,  dimensionless longitudinal and traverse coordinates; u = ~/uo;  v = ~/uo,  dimensionless 

components of the velocity vector; h, half-height of the plane channel; u01, mean velocity at the channel inlet; Re 

= uoh/v ,  Reynolds number; v, coefficient of kinematic viscosity; Pe = u o h / D ,  diffusional Peclet number; D, diffusion 

coefficient; 0 -- C/Co,  dimensionless concentration of the solute; Co, solute concentration at the channel inlet; Ow, 

dimensionless concentration of the solute on the membrane; V = V/uo ,  transmembrane velocity. 
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